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Lemma 1. Let G be a finite abelian group of order m ∈ N.
Let m ∈ Z with gcd(m,n) = 1.
Then the power map φ : G→ G given by g 7→ gn is an automorphism.

Proof. Since G is abelian, φ is a homomorphism.
Let g ∈ ker(φ), so that gn = 1. Then the order of g divides n. Also the order

of g divides the order of the group by LaGrange’s Theorem. But this says that
the order of g divides gcd(m,n) = 1, so the order of g is 1, and g = 1. Thus φ is
injective, and since G is finite, it is also surjective. �

Lemma 2. Let G be a finite abelian group and let p be a prime integer.
If p | |G|, then G has an element of order p.

Proof. Let the order of G be pm for some m ∈ Z. Let k ∈ G be a nontrivial element.
If ord(k) = pn for some n ≤ m, then then kn has order p and we are done. Thus
we suppose that p does not divide the order of k. Let H be the cyclic subgroup
generated by k. Then p does not divide the order of H, and since G is abelian, H
is normal.

Thus p divides the order of the group G/H. By induction, we assume that G/H
has an element gH of order p. Then (gH)p = gpH = H, so gpkn = 1 for some
kn ∈ H. Let h be the pth root of kn in H. Then (gh)p = 1. Since g /∈ H, gh 6= 1.
Thus ord(gh) = 1. �

Date: November 27, 1995.

1



2

Theorem 1. Cauchy’s Theorem
Let G be a finite group and let p be a prime integer.
Then p | |G| if and only if G has an element of order p.

Proof.
(⇐) If G has an element of order p, then it has a subgroup of order p, and the

order of the subgroup divides the order of the group by LaGrange’s Theorem.
(⇒) Suppose that G is the smallest counter example; that is, suppose that G

does not have an element of order p but that every group H with |H| < |G| and
p | |H| has an element of order p.

For any subgroup H < G, if p | |H|, then H has an element of order p and so
does G. Thus p does not divide the order of any proper subgroup of G.

Let G act on itself by conjugation. Then G acts transitively on the orbits of this
action, which are the conjugacy classes in G. Since the orbits partition G, we have

|G| =
∑
|orb(g)| =

∑
|gG|,

where the sum is taken over a set of representatives of each class.
The points in the orbit correspond to the cosets of the stabilizer of a transitive

action. The orbit of g ∈ G is gG and the stabilizer of g is CG(g). Thus we have a
correspondence

gG ↔ G/CG(g);

that is, |gG| = |G/CG(g)|. Also, the points in the center of G are fixed by the
action, so we have

|G| = |Z(G)|+
∑
|G/CG(g)|,

where the sum is taken over a set of representatives of conjugacy classes of noncen-
tral elements.

If g is a noncentral element of G, then CG(g) is a proper subgroup, so p does not
divide |CG(g)|. Thus p divides |G/CG(g)|, and so p divides

∑
|G/CG(g)|; since p

also divides the order of G, p must divide |Z(G)|. Thus G has a nontrivial center.
But since p divides the order of this center, it cannot be a proper subgroup. Thus
G = Z(G) and G is abelian. However, by Lemma 2, this implies that G has an
element of order p. �
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